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We perform an analysis of the experimentally known temperature dependence of the staggered magnetiza-
tion in the antiferromagnetic phase. This analysis allows us to put an upper limit on the unknown value of the
spin-wave velocity along the stripes of equal spin direction �spin stripes�. The velocity is about ten times
smaller than the velocity perpendicular to the spin stripes. The strongly anisotropic spin-wave dispersion
implies a high density of low-energy magnetic excitations. We demonstrate that this high density strongly
enhances the 75As NMR spin-lattice relaxation via the Raman scattering of magnons. We derive the polariza-
tion dependence of this relaxation channel and find very good agreement with experimental data. The high
density of low-energy magnetic excitations deduced from our phenomenological analysis supports the scenario
that ferropnictides are close to a quantum phase transition.
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I. INTRODUCTION

One of the most important and widely discussed issues in
the physics of iron pnictide superconductors is whether these
materials are strongly or weakly correlated. A closely related
issue is the origin of magnetism in their parent compounds.
In a slightly simplistic way one can formulate the problem in
the following way. Does the magnetism arise from itinerant
electrons or is it due to localized electrons? For a recent
review see, for instance, Ref. 1. The situation is different
from cuprates where parent compounds are clearly Mott in-
sulators and hence there is no ambiguity about the origin of
magnetism.

In the present work, we do not address the issue of strong
or weak correlations directly. In a phenomenological way, we
analyze available experimental data on low-temperature
magnetic properties and determine the previously unknown
spin-wave velocity along the spin stripes, by which we refer
to chains of spins running in b direction in which all the
spins point in the same direction �cf. Fig. 1�. This spin-wave
velocity turns out to be very small. It is by an order of mag-
nitude smaller than the velocity perpendicular to the spin
stripes. The knowledge of the velocity is very important it-
self because it predicts the outcome of future inelastic
neutron-scattering measurements. In addition, the knowledge
sheds light on the issue of strong or weak correlations. The
low velocity implies a high density of magnetic excitations
and the high density strongly supports the strong-correlation
scenario based on the vicinity to a quantum critical point.2–5

Due to the high spectral density, magnons must contribute
significantly to the NMR relaxation rate at a temperature
above the spin-wave gap. We consider this mechanism for
75As NMR spin-lattice relaxation and find a very good agree-
ment between theoretical results and experimental data.

The magnetic long-range order is firmly established in the
parent compounds LaFeAsO and Sr�Ba,Ca�Fe2As2 by neu-
tron scattering,6–9 muon spin resonance, and Moessbauer
spectroscopy.10,11 The neutron scattering reveals a columnar
antiferromagnetic ordering with a staggered magnetic mo-
ment of �0.3–0.4��B in LaFeAsO and �0.8–0.9��B in
Sr�Ba,Ca�Fe2As2. All the compounds are layered systems

consisting of Fe-As planes. For simplicity, we consider only
the tetragonal lattice which is formed by the Fe ions ignoring
a small orthorhombic and even monoclinic structural distor-
tion. In Fig. 1 we show schematically the Fe-As plane and
the spin ordering at the Fe sites. Along the a axis, the spin
directions alternate whereas they are the same along the b
axis. Spins also alternate along the c axis which is orthogonal
to the plane. In our study, the lattice spacings, i.e., the dis-
tances between Fe ions, are ga�gb�2.79 Å and gc
�6.15 Å. We choose units such that all lattice spacings
equal unity, i.e., ga→1, gb→1, and gc→1. Note that the
arsenic ions are shifted out of plane by �c� �1.35 Å in a
checkerboard pattern shown in Fig. 1.

The spin-wave velocities along the a and the c axis as
well as the spin-wave gap at zero temperature have been
measured by neutron scattering for SrFe2As2 �Ref. 7� and for
BaFe2As2 �Ref. 8� as

va � 205 meV,

vc � 45 meV,

��T = 0� � 6.5 meV. �1�
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FIG. 1. The Fe-As plane. Fe ions are shown by open circles and
As ions are shown by filled circles. The Fe spins are shown by
arrows. The Fe ions lie exactly in the plane while As ions are out of
plane by �c� �1.35 Å in a checkerboard pattern. The pattern is
shown by different fillings of the symbols for the As ions.
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But the spin-wave velocity along the b axis, i.e., along the
spin stripes, has not yet been measured to our knowledge.
Note that the unit-cell lattice spacings for the 122 com-
pounds SrFe2As2 and BaFe2As2 are two times larger than the
corresponding values of g, a=2ga, b=2gb, and c=2gc. The
standard crystallographic convention is to set a→1, b→1,
and c→1. Thus the values of the spin-wave velocities in
these standard units are twice larger than the values in our
units.

The Néel temperature for these compounds is TN
=200–220 K. The temperature dependence of the normal-
ized intensity of elastic neutron scattering, I�T� / I�0�, and the
temperature dependence of the normalized spin-wave gap,
��T� /��0�, have been measured in Ref. 7. These experimen-
tal results are shown in Fig. 2.

We are not aware of a direct measurement of the spin
magnetic susceptibility of SrFe2As2. However, the data for
LaFeAsO �Refs. 12 and 13� and BaFe2As2 �Ref. 14� show
that the spin susceptibility in the AF ordered phase averaged
over directions is about

�s � 1 � 10−4 emu/�mol Fe� . �2�

We will use this value for SrFe2As2 keeping in mind that it
might be off by a factor �1.5–2.

II. EFFECTIVE ACTION FOR MAGNETIC EXCITATIONS

To describe spin waves we use an effective model, the
nonlinear � model with the following Lagrangian

L =
��

2
�n�̇2 − va

2��an��2 − vb
2��bn��2 − vc

2��cn��2 + �b
2na

2�

=
��

2
����n��2 + �b

2na
2� , �3�

where

�� = ��t,iva�a,ivb�b,ivc�c� , �4�

and �b is the bare spin-wave gap. The standard constraint
n�2=1 is imposed. Hereafter we set kB=	=1 for simplicity.
Note that generally the bare spin-wave gap �b can depend on
temperature if the temperature dependence arises from phys-
ics different from spin waves, say from phonons. We stress
that this phenomenological description of low-energy mag-
netic excitations is valid independent of the specific mecha-
nism for magnetism. The description is equally valid for
magnetism caused by itinerant electrons and for magnetism
caused by localized electrons. We will use Eq. �3� below the
Néel temperature TN. The field theory, Eq. �3�, is the only
possible effective theory that describes spin waves with dis-
persion 
q=�va

2qa
2+vb

2qb
2+vc

2qc
2+�2. Therefore, the only im-

portant issue for the justification of Eq. �3� is that there are
well-defined low-energy spin waves. This is directly sup-
ported by experiment.7,8 According to Ref. 8 the spin waves
are well defined up to 
�150 meV. This is an important
piece of information but pragmatically, for purposes of the
present work, we only need the information that spin waves
exists with energies 
�TN�20 meV.

The spin-wave velocities va and vc are known from ex-
periment, see Eq. �1�. The susceptibility �� is related to the
spin magnetic susceptibility �Eq. �2�� as

�s = ��

2

3
�g�B�2NA, �5�

where g is the gyromagnetic ratio, �B is the Bohr magneton,
NA is the Avogadro constant, and the factor 2/3 comes from
averaging over orientations. Lacking any other information,
we take the standard value of the gyromagnetic ratio, g=2.
Equations �5� and �2� yield

�� = 1.2 · 10−31/meV. �6�

Due to the uncertainty in the values of �s and g, one has to
face an uncertainty in the value of ��. At worst, we estimate
the uncertainty in the value of �� to be a factor 1.5–2 rela-
tive to the value given in Eq. �6�.

Assuming that the system is below the Néel temperature,
n� ��na ,0 ,0�, we represent the staggered magnetizaton by

n� = �na,nb,nc� = ��1 − �2,�� � , �7�

where the field �� is two dimensional having only b and c
components. The static component of the staggered magne-
tization reads in the first two leading orders

	na
 � 1 −
1

2
	�� 2
 , �8�

where 	 . . . 
 denotes the quantum Gibbs expectation value.
Expanding Eq. �3� in powers of �� up to quartic terms

�single-loop corrections� we obtain the following Lagrangian
for the � field:
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FIG. 2. �Color online� Temperature dependence of the intensity
of elastic neutron scattering at the antiferromagnetic superlattice
reflection and of the spin-wave gap in SrFe2As2. Points with error
bars show experimental data from Ref. 7. Blue circles show the
normalized neutron-scattering intensity, I�T� / I�0�, and red dia-
monds show the normalized spin-wave gap, ��T� /��0�. The curves
show theoretical results for the normalized neutron-scattering inten-
sity for various values of the spin-wave velocity vb along the spin
stripes. Solid black curves correspond to the first scenario for the
spin-wave gap, Eq. �25�, and dashed red curves correspond to the
second scenario, Eq. �26�. The theory is justified only where the
deviation of I�T� / I�0� from unity is small.
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L =
��

2
������ �2 + �� 2����� �2 − �b

2�� 2� . �9�

In order to derive the temperature-dependent quadratic effec-
tive Lagrangian LT, one has to perform a decoupling in the
quartic term in Eq. �9�,

�� 2����� �2 → 	�� 2
����� �2 + �� 2	����� �2


→ 	�� 2
����� �2 + �b
2�� 2	�� 2
 . �10�

Here we have used integration by parts and the equation of
motion in leading order,

��
2 �� + �b

2�� = 0. �11�

Hence the decoupling yields the following effective La-
grangian:

LT =
��

2
��1 + 	�� 2
������ �2 − �b

2�1 − 	�� 2
��� 2� . �12�

After rescaling the field, �� R=�1+ 	�� 2
�� , we find that the
spin-wave gap is renormalized as

��T� = �1 − 	�� 2
��b. �13�

Following Fermi’s golden rule, the scattering intensity I�T� is
proportional to the square of the staggered magnetization
	na
2 which is given by Eq. �8�. Combining this fact with Eq.
�13� yields

I�T�
Ib

=
��T�
�b

= 1 − 	�� 2
 + O�	�� 2
2� , �14�

where Ib is a bare scattering intensity without quantum fluc-
tuations, for further discussion see below. For deriving this
equation, we assume formally that 	�� 2
�1. We will discuss
this point in more detail below.

A standard calculation of the expectation value 	�� 2
 leads
to the following result:

	�� 2
 =
1

��
� d3q

�2��3

1


q
�2n�
q� + 1� , �15�

where


q = �va
2qa

2 + vb
2qb

2 + vc
2qc

2 + �2�T� �16�

is the spin-wave dispersion and

n�
q� =
1

e
q/T − 1
�17�

is the Bose-Einstein distribution function. The unity in the
factor �2nq+1� in Eq. �15� is due to quantum fluctuations
which lead to the quantum renormalization of the bare spin-
wave gap, �b�T�→�qr�T�, and to the concomitant renormal-
ization of the bare scattering intensity, Ib→ Iqr�T�. The quan-
titative outcome of this renormalization depends on the high-
energy cutoff

Iqr

Ib
=

�qr

�b
= 1 −

1

��
� d3q

�2��3

1


q
. �18�

In our study, we include the case where the quantum renor-
malized quantities retain a temperature dependence from a
temperature-dependent �b�T�, whose dependence is induced
from physical effects outside of the nonlinear � model, for
instance from structural changes or phonons. The quantum
renormalized quantities equal the physical ones at zero tem-
perature, ��0�=�qr�0� and I�0�= Iqr�0�. Note that Ib is tem-
perature independent by definition.

On the present single-loop level, the temperature effects
can be accounted for by

I�T�
Iqr�T�

=
��T�

�qr�T�
= 1 − 	�� 2
therm �19a�

	�� 2
therm =
1

��
�

0



��
,��T��n�
�d
 �19b�

instead of Eqs. �14� and �15�. Here we use the density of
magnetic excitations ��
 ,�� which reads in three dimen-
sions

��
,�� =
1

�2vavbvc

�
2 − �2��
 − �� . �20�

The above continuum expressions in three dimensions are
only valid if vb is not very small compared to temperature,
vb��T, because for dominating temperature, the boundaries
of the Brillouin zone are felt which are not captured by the
non linear � model. In the opposite limit, vb��T, one
should use the two-dimensional density of

��
,�� =
1

�vavc

��
 − �� . �21�

We point out that for temperature-independent bare gap �b,
we have Iqr�T�= I�0� and �qr�T�=��0�. Then Eq. �19a� al-
ready provides the result to be compared with experiment.
Both normalized quantities, gap and intensity, should display
the same temperature dependence in their deviation from
unity. For this reason they are depicted in the same plot in
Fig. 2. We will discuss the very different behavior of both
experimental quantities below.

Equation �19a� does not yet provide the ratio I�T� / I�0�
given by experiment if �b is temperature dependent. To ob-
tain full knowledge about I�T� / I�0�, we have to account for
the influence of the infrared cutoff, i.e., the gap, on the quan-
tum renormalization. We find

Rqr�T� ª
Iqr�T�
Iqr�0�

�22a�

=1 −
1

2��
�

0

�

d

��
,�qr�T�� − ��
,�qr�0��



, �22b�

where we introduce a high-energy �UV� cutoff � to ensure
convergence. A realistic estimate is �=200 meV.5,8 Note
that the difference occurring in Eq. �21� depends only
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weakly, i.e., logarithmically on the precise value of �. In two
dimensions, there is even no dependence at all on the UV
cutoff.

The final result is obtained by combining Eqs. �19a� and
�21� in

I�T�
I�0�

=
I�T�

Iqr�T�
·

Iqr�T�
Iqr�0�

= �1 − 	�� 2
therm�Rqr�T� , �23�

where Iqr�0�= I�0� entered.
A remark on the validity of the single-loop approximation

is in order. Obviously, the theoretical expressions are only
valid if the thermal renormalization remains small, i.e.,
�I / I�0��1 and �I= I�0�− I�T�. Therefore, one cannot rely on
Eq. �23� in the vicinity of the critical point. But we can rely
on Eq. �23� at T�200 K where, according to experimental
data, �I / I�0��0.3.

III. VALUE OF THE GYROMAGNETIC RATIO
AND POSSIBLE ORBITAL DYNAMICS

In the present work we use the standard value g=2 which
is the spin gyromagnetic ratio. This scenario assumes that the
magnetism in the system is entirely due to spins but the
orbital physics of iron is certainly more complex and spin-
orbit coupling plays an important role.15 So values of the g
factor or g� tensor different from a scalar value of 2 are quite
possible.

The phenomenological nonlinear �-model description is
valid independent of the origin of magnetism. Therefore, our
conclusions in the present paper do not depend on the extent
that orbital and/or charge degrees of freedom play a major
role. Only the precise numerical estimates depend on the
numerical value of g. So for the present paper a better
knowledge of g will affect only the numerical estimates and
not the scenario. But for microscopic considerations, for in-
stance, the issue which value of spin is most appropriate, the
local-orbital physics is of fundamental importance and mea-
surements of g can shed light on this issue.

We are not aware of data on the value of g. Hence we
would like to point out that the large value of the spin-wave
gap, ��0�=6.5 meV, gives a unique opportunity to measure
g by inelastic neutron scattering. If a magnetic field B is
applied, that is, directed along the a axis, the spin-wave ex-
citations will be shifted in energy according to their projec-
tion of the angular momentum by �1 along a. Therefore, the
magnetic field will split the spin-wave gap in two,

�− = 6.5 meV − g�BB , �24a�

�+ = 6.5 meV + g�BB . �24b�

For B=15 T and for g=2, the splitting takes the value
2g�BB�3.5 meV so that it should be easily observable in
neutron spectra.

IV. ANALYSIS OF EXPERIMENTAL DATA

For explicit calculations we need to specify the tempera-
ture dependence of the quantum renormalized gap �qr. Since

we do not have experimental knowledge about this quantity,
we study two scenarios which correspond to opposite limits.
It will turn out that our conclusions depend only weakly on
which scenario is realized.

The spin-wave gap is caused by spin-orbit interaction in
combination with the orthorhombic lattice deformation. The
deformation is practically temperature independent below
TN. Hence the scenario �i� assumes that the quantum renor-
malized spin-wave gap �qr is temperature independent. Then
the observed spin gap acquires its temperature dependence
��T� solely from Eq. �19a�. The zero-temperature value is
fixed to

�qr = ��0� = 6.5 meV, �25�

and the temperature dependence of the physical gap ��T� is
determined by the self-consistent solution of Eqs. �1�, �6�,
�19a�, �19b�, �20�, and �21�. However, according to Eq.
�19a�, this scenario implies the identical temperature depen-
dence of the normalized neutron intensity and of the normal-
ized spin-wave gap. This consequence is not supported by
experiment. According to the data from Ref. 7 shown in Fig.
2, the dependencies are significantly different. But it cannot
be excluded that experimental difficulties, for instance the
influence of the charge degrees of freedom, prevent the reli-
able measurement of the spin gap at finite temperature. So it
is instructive to consider scenario �i� as one limiting case.

In scenario �ii�, we assume that the quantum renormalized
gap �qr is temperature dependent in precisely such a way
that the experimentally observed ��T� shown in Fig. 2 is
induced. The temperature dependence �bR�T� may result
from the influence of low-energy phonons. In this case, we fit
the experimental data7 for ��T� by the linear function

��T� = 6.5 meV − 0.020T meV/K. �26�

Then we employ Eqs. �1�, �6�, �19a�, �19b�, �20�, and �21� to
calculate the neutron-scattering intensity resulting from the
phenomenological spin-wave gap, Eq. �26�.

The theoretical results obtained in the two scenarios for
the values of the spin-wave velocity along the spin stripes
vb=100, 50, 30, 20, 10, and 0 meV are displayed in Fig. 2.
The solid black curves correspond to scenario �i�, i.e., Eq.
�25�. The dashed red curves correspond to scenario �ii�, i.e.,
Eq. �26�.

We emphasize that both scenarios for the temperature de-
pendence of the spin-wave gap yield almost coinciding
curves for the neutron-scattering intensity. This can be attrib-
uted to the fact that by construction both scenarios are equal
at T=0 so that the difference between them can only be
discerned at sufficiently large temperature. But if T���T�,
the precise value of the spin-wave gap does not matter any-
more.

We already pointed out that the comparison between the-
oretical and experimental data makes sense only below 180–
200 K where �I / I�0� is sufficiently small and the theory is
quantitatively reliable. The curves with vb=100 meV and
vb=50 meV clearly disagree with experiment, while the
curves with vb=30 meV and vb=10 meV constitute upper
and lower bounds to the experimental data. The curve for
vb=20 meV is in good agreement with the data in the range
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of its validity ��I / I�1�. The three-dimensional �3D� for-
mula �20� is at the verge of its validity for vb=10 meV since
vb��T. Therefore, in Fig. 2, we also include curves for vb
=0 which are obtained using the two-dimensional �2D� for-
mula �21�. We also studied the 3D→2D crossover empiri-
cally replacing vb

2qb
2 by 4vb

2 sin2�qb /2� in Eq. �16�. We do not
show the corresponding curves because they completely con-
firm the results shown in Fig. 2.

Thus, our conclusion is that the value of the spin-wave
velocity along spin stripes, vb, is in the range

vb � 10 – 30 meV, �27�

which means it is at least ten times smaller than va
�205 meV. We stress that in essence this conclusion is
based on the density of magnetic excitations �Eq. �20��. The
number of excitations at low energies govern the thermally
induced reduction in the staggered magnetic moment. If vb is
large, the density is low implying a weak temperature depen-
dence of the elastic neutron-scattering intensity. If vb is
small, the density is large implying a strong temperature de-
pendence of the elastic neutron-scattering intensity. The
value of vb must be sufficiently low to produce the experi-
mentally found temperature dependence of the scattering in-
tensity.

The very low value of vb that follows from the experi-
mental result for I�T� implies that magnetic fluctuations play
a prominent role in the ferropnictides. This supports the pre-
viously proposed scenario that the ferropnictides are systems
close to a quantum phase transition.5

V. NMR SPIN-LATTICE RELAXATION FOR 75As

As an additional test bed for our scenario of strong mag-
netic fluctuations at low energies, we study the NMR relax-
ation rate T1

−1. This relaxation is due to inelastic Raman-type
scattering of thermally excited magnons from nuclear spin,
see Fig. 3.

Clearly, this mechanism is most important at temperatures
above the spin-wave gap. For concreteness, we consider the
relaxation of the nuclear spin of 75As. The As ion is posi-
tioned at the top of a pyramid with four Fe ions at its base,
see Fig. 1. The hyperfine interaction of the 75As nuclear spin
I with the electronic spin S on the adjacent Fe ion is of the
following form:16

H = B�I� · S�� + C�I� · N� ��S� · N� � , �28�

where N� is a unit vector directed from As to Fe, see Fig. 1.
The B term is due to s-wave transferred hyperfine interaction
and the C term is due to p-wave transferred hyperfine inter-

action. It is known16 that the effective static hyperfine mag-
netic field at As takes the value Beff�1.5 T and is directed
along the c axis. The average electronic magnetic moment at
the Fe site is �0.8�B.7,8 Assuming that g=2, this implies an
average static spin component of 	S
�0.4. Since the elec-
tronic spins are arranged in a staggered pattern, see Fig. 1,
only the C term in Eq. �28� contributes to the effective static
field. Hence

�nBeff = 4 � 0.4 � 0.33 � C � I , �29�

where I=3 /2 is the nuclear spin and �n=1.86�N is the mag-
netic moment of the 75As nucleus. The factor 4 in Eq. �29�
stems from the four neighboring Fe ions and 0.33=NaNc is a
product of components of the unit vector N� in the geometry
of the As-Fe4 pyramid. From Eq. �29� we find

C � 1.1 � 10−4 meV → 27 MHz. �30�

Alternatively, the rescaling from the known values of trans-
ferred hyperfine constants in cuprates yields the following
estimates

B � 10−3 meV → 250 MHz, �31a�

C � 10−4 meV → 25 MHz. �31b�

While the estimate for C agrees very well with Eq. �30�
deduced from the experimental data,16–18 the estimate in Eq.
�30� for B is about five times larger than the one measured in
Ref. 16. It is worthwhile noting that there is a comment in
Ref. 16 that they might underestimate the value of B. In the
present work, we will rely on the value of C given in Eq.
�30� and on the estimate for B given in Eq. �30�. It is very
natural that B�C because B is due to the s-wave and C is
due to the p-wave hyperfine interaction.

The static components of the electron spins are polarized
along the a axis, see Fig. 1. Hence the spin-wave excitations
are polarized along the b and the c axis. To describe the
magnon Raman process shown in Fig. 3, we need only the
part of Eq. �28� which is bilinear in spin-wave creation and
annihilation operators, i.e., bilinear in �� in the language of
the nonlinear � model. This implies that we only need to
keep the terms in Eq. �28� that are proportional to the a
component of the electron spin S,

H → �BIa + 0.33CIc��
i

Sai, �32�

where the summation goes over four nearest Fe sites. Finally,
in the notation of the � model, S� /Seff→n� = �na ,nb ,nc�
= ��1−�2 ,�� �, which leads to

H → ��r�Seff�2BIa�a + 40.33CIc�na

→ ��r�Seff�BIa�a + 0.66CIc��� 2, �33�

where constant terms are omitted in passing to the last line.
The gradient �a along the a axis in the B term appears be-
cause the magnetization in this direction is staggered. We
remind the reader that in our notations both ��r� and � are
dimensionless. In Eq. �33� we have introduced the effective
spin Seff. The first naive impression is that Seff= 	S
�0.4.
This would imply that the magnon Raman operator is renor-

I I’

k q

FIG. 3. Magnon Raman scattering on nuclear spin due to hyper-
fine interaction. Solid lines denote magnons, the double lines denote
a nuclear spin. The dashed line denotes the hyperfine interaction.
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malized by quantum fluctuations exactly like the staggered
magnetization. However, we have checked by an explicit
single-loop calculation that the Raman operator is not renor-
malized while the staggered magnetization is certainly re-
duced in the single-loop approximation. So the naive expec-
tation is wrong. For numerical estimates we will use

Seff = 1. �34�

It is clear from the kinematic structure of Eq. �33� that the B
term contributes to the spin-lattice relaxation only if the ini-
tial nuclear spin is directed perpendicular to the a axis. The
C term contributes to the relaxation only if the initial nuclear
spin is directed perpendicular to the c axis. The Raman re-
laxation rate due to the B term is given by Fermi’s golden
rule

WB = 2�
�SeffB�2

V2

� �
k,q

�ka − qa�2

��
2 
k
q

nk�1 + nq���
k − 
q − 
NMR� .

�35�

The factor 2�=2�
1
2 �2� is the factor 2� from Fermi’s

golden rule multiplied by the number of magnon polariza-
tions, 2, and multiplied by 1

2 resulting from Clebsch-Gordon
coefficients related to the nuclear spin I=3 /2. The factor
���

2 
k
q�−1 is due to the normalization of the �� field, the
factor �ka−qa�2 is due to the gradient �a, and nq is given by
Eq. �17�. Since the NMR frequency is very small, 
NMR
�
q, the expression �35� can be transformed to

WB =
�SeffB�2

12�3���vavbvc�2

1

va
2�

�

 �
2 − �2�2

sinh2�
/2T�
d
 , �36�

where � is the spin-wave gap. The two factors �
2−�2� in
the numerator of the integrand stem from the density of
states in three dimensions and from the matrix element �ka
−qa�2.

Similarly, the Raman relaxation rate due to the C term
reads

WC =
�Seff0.66C�2

8�3���vavbvc�2�
�

 �
2 − �2�
sinh2�
/2T�

d
 , �37�

where there is one factor �
2−�2� less in the numerator be-
cause there is no particular momentum-dependent matrix el-
ement.

It is clear that Eqs. �36� and �37� are not justified in the
vicinity of the Néel temperature. Obviously, they are not
valid at T�TN either. So we use them only below TN. Both
WB and WC are very steep functions of temperature. Plots of
WB and WC calculated with parameters given by Eqs. �1�, �6�,
�30�, and �34� and vb=20 meV are presented in Fig. 4. The
decay rate WC is much smaller than WB, WB�WC, and hence
1 /T1�WB so that the magnon Raman relaxation is mainly
due to the s-wave transferred hyperfine interaction. The esti-
mate for the value of relaxation rate presented in Fig. 4
agrees with the available data.16–18

One can fit the data by fine tuning of B and/or vb and/or
��. But this is not our aim here. Note, however, that the
NMR relaxation rate, Eq. �36�, is proportional to the second
power of the density of magnetic excitations, Eq. �20�. So it
is very sensitive to the value of � in Eq. �20� and hence to the
value of vb. Hence the fact that our previous set of param-
eters yield the correct magnitude of the NMR relaxation rate
strongly supports our claim that vb is small.

Since the relaxation is dominated by WB, we predict a
significant polarization dependence of the relaxation. The
corresponding Hamiltonian contains only the a component of
the nuclear spin, see Eqs. �32� and �33�. Therefore, this
mechanism does not contribute to relaxation if the 75As
nuclear spin is polarized along the a axis. The mechanism
contributes equally for polarizations along the b and the c
axis. For a twinned sample, where domains with swapped a
and b axes are of equal weight, this argument implies that the
relaxation for the c polarization of nuclear spin is two times
faster than the relaxation for an in-plane polarization of the
nuclear spin.

For temperatures below the spin-wave gap the magnon
Raman relaxation is essentially switched off. In other words,
the mechanism related to collective magnetic modes is not
active. But there is also a diffuse magnetic relaxation stem-
ming from the charge degrees of freedom because the system
is not an insulator. It is natural to assume that this diffuse
relaxation scales linearly with temperature as it does in nor-
mal Fermi liquids. This low-temperature behavior of the re-
laxation was observed in Refs. 16 and 18. The charge-driven
relaxation is certainly also active for T��, but in this re-
gime, its contribution to the NMR relaxation rate is relatively
small with the contribution from collective magnetic modes
prevailing.

VI. CONCLUSIONS

We studied the parent ferropnictides below their Néel
temperature. Based on the nonlinear � model, we considered
the available experimental data on the temperature depen-
dence of the staggered magnetization phenomenologically.
We found that one needs a high density of magnetic excita-
tions to explain the relatively strong temperature dependence
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FIG. 4. NMR relaxation rates due to magnon scattering. The
solid curve gives contribution of the s-wave transferred hyperfine
coupling, see Eq. �36�. The dashed curve gives contribution of the
p-wave transferred hyperfine coupling, see Eq. �37�. The parameters
are given by Eqs. �1�, �6�, �30�, and �34� and vb=20 meV.
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of the magnetization. This implies that the spin-wave veloc-
ity along the spin stripes is very small. The values for this
velocity estimated from the analysis are vb�10–30 meV.
For comparison, the in-plane velocity perpendicular to
stripes takes the value va�205 meV.

We also analyzed the NMR spin-lattice relaxation rate for
75As. Due to their high spectral density, the magnons domi-
nate the relaxation rate at temperatures above the spin-wave
gap. Our estimates for the relaxation rate based on the den-
sity found from the neutron-scattering data agree very well
with direct NMR measurements. This is an independent con-
firmation of the high spectral density of magnetic excitations.

So both the temperature-dependent magnetization as well
as the NMR relaxation rate confirm strong magnetic fluctua-
tions at low energies. Thus the present phenomenological
analysis corroborates the scenario that the ferropnictides con-
stitute systems close to a quantum phase transition triggered
by frustrated magnetic couplings.5 Hence a strongly corre-
lated picture of the ferropnictides is favored.

Very recent inelastic neutron-scattering data19,20 indicate
the ratio of spin-wave velocities va /vb�2. This is not con-
sistent with our conclusion va /vb�10. Our analysis of the
temperature dependence of the staggered magnetization and
especially of the NMR relaxation rate is in essence based
only on the spin-wave dispersion, Eq. �16�. Only the disper-
sion determines the density of excited magnons at a given
temperature and only the density determines the NMR relax-
ation rate. With the spin-wave velocity vb taken from19,20 one
obtains the relaxation rate about 20–30 smaller than the ex-
perimental one.

How can the above discrepancy be explained? The
data19,20 is taken on twinned samples because only below the
structural-transition temperature, the orthorhombicity occurs.
Superposing dispersions with prominent ridges such as the
ones in Fig. 3a in Ref. 5 can lead to responses similar to the
ones in Refs. 19 and 20 for moderate and high energies. The
time-of-flight technique used in both experimental
probes19,20 is certainly best suited for investigating the mod-
erate and higher energies.

If the careful study of the influence of twinning does not
solve the discrepancy, our analysis indicates the existence of
some low-energy ��10–20 meV� magnetic degrees of free-
dom which have not been taken into account so far. These
degrees of freedom must contribute to the NMR relaxation
and they must be difficult to detect by neutron scattering.

From our results and the above discussion, we conclude
that further experiments focusing on low-lying magnetic
modes are called for to resolve this crucial issue. It would be
highly desirable if low-temperature detwinned samples could
be generated.
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